MEMOIR 1: MIAMI GEOLOGICAL SOCIETY

A SYMPOSIUM OF RECENT SOUTH FLORIDA FORAMINIFERA

bу

W. D. Bock
W. W. Hay
J. I. Jones
G. W. Lynts

S. L. Smith R. C. Wright

Edited by James I. Jones and Wayne D. Bock

Additional copies of this memoir are available from the Miami Geological Society, 10 Rickenbacker Causeway, Miami, Florida 33149, at \$7.00 each.

STATION		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
		H	,	8		8		7	_		\neg			123	82		309		1
NUMBER OF SPECIMENS	347	368	307	308	30	208	111	307	23	20	303	98	3	223	-	58	ě	39	307
Ammodiscus incertus			Н	-	-	0.5	0.8	\Box	Щ	_	_	_	_	_		_	\dashv	_	
Glomospira charoldes Ammobaculites dilatatus	09	0.3	Н	-	0.3	-	-	-	0.4	1	\dashv	\dashv	-	-	\vdash	-	\dashv	-	-
A. exigues		Н	Н	Н	\vdash	Н		Н	0.4	H		\neg				-		\neg	-
Schenckiella occidentalie	10		0.3	0.6	1			6		1	T		6						0.3
Clavulina tricarinate	0.6			2	2			0.3											
Valvulina oviedoiana (Graup I)	2	1	Ш	2	-	Н	-	\vdash	_	-	-	-	_	_		-	\dashv	4	0.3
V. oviedolana (Group 2) Cyclogyra involvens	03	0.8	2	Н	Н	2	6	0.7	2	3	\neg	\dashv	\dashv	\dashv	QS	\dashv	Ω3	3	_
Nodobaculariella cassis	H	Н	Ė	Н	\neg	Ť	Ť	-	٦	Ť	İ	\neg	\neg						_
Milialinella circularis	2	1	10	4	8	12	3	2	6	4	7		3	4	2		1		19
M. fichteliana		0.5				Ц		Щ				_	_	_	Ц	_	4	_	_
M. labiosa M. obliquinoda	0.6	0.5	0.3	0.3	0.3	Н	0.8	-	\vdash	2	-	2	16	-	-	-	03	\dashv	3
M. obliquinoda M. suborbicularis	ue	us	0.3	0.3	u3		0.6	\dashv	H	-	H	-	-		H		0,0	3	_
Massiling secons		Q.B	2	0.3	-	05	2	0.7	0.9									Ť	_
Pyrgo subsphaerica	Q3																		
Quinqueloculina agglutinans	0.9	8	3				0,8	_	0.4	-	\dashv	-	3	_	_	_	0.6	_	_
Q. bosciana Q. laevigata	3	3	7	8	10	18	7	16 28	45 9	18	6	36 16	3	3	16 7	2	17	46 5	6
Q. lamarckiana	3	8	5	•	7	-	0.0	20	-	H	17	-	Ť	Ť	H	-	4	3	÷
Q. poeyana	25	8	-	25	6	18	3	10	7	11	4	30		7	4	9	9	5	9
Q. palygona	1	0.8						0.3	0.4		03					2			0.6
Q. sabulosa	3	2	1	3	03	0.5	3	2	0.4	1	2	_	_	_		_	2	_	2
Q. seminulum	3	0,8	3	4	Н	0.5	0.8	2	04 09	2	0.7	2	3	09	0.5	2	3	В	1
Q. subpoeyana Q. tenagos	0.6	6 0.8	3	6	\vdash	05	2	-	u9	+	-	-	\dashv	0.4	us	-	3	-	-
Spiroloculina antillarum		-		0.3		0.5			П		٦	\neg							
S. eximia					0,3														
Triloculina bassensis	0.6	13	3	0.3				0.7	-	0.5					1				
T. bermudezi	8	4	7	9	43	12	-	23	11	-	29	5	39	27	-	33	-	15	32
T. linneiano T. ablonga	3	2	5	6	5	5	3	4	2	2	3	2	-	7	4	5	8	3	4
T. rotunda	0.6	0.5	1	0.6	2	ī	0.8	0.3	H	05	1	4		÷	0.5		i	3	-
T. sidebottomí	0.9																		
T. trigonula	0.9	2		0.3															0.6
Houering bradyl	3	3	5	3	5	21	15	2	9	7	25	2	6	41	33	7	15	8	1
Archaias angulatus Fissurina cf. F. lucida	\vdash	20	6	-	Н	-	0.8	-	Н	-	Н	-	Н	-	Н	5	Н	-	0,6
Butiminetta elegantissima	-	-	-				\vdash	_	\vdash							_		Н	H
Balivina lanceolata	0.6																		
8. lawmani																			
B. striatula	-	_	_	_	_	_	_	L		_		_		_				_	_
Discorbis floridana D. nitida	Q9	05	0,6	1	0.3	2	5	-	0.9	-	2		6	2	2	2	0.6	-	0.3
D. nitida D. rosacea	+	۳	-	-	0.3	-	-	-		-	÷	_							-
Planorbuling mediterronensis	0.3																		
Ammonia beccarii	2	2	9													10			0.3
A. translucens	5	1	-	9	6	-	_	1	L	_	<u> </u>	_	10	_		2	L		L
Elphidium advenum E. galvestonense	0.3	4	9	-	-	-	-	-	0.4	-	-	-	-	-	-	7	H	H	-
E. galvestonense E. poeyanum	4	0.8	-	-	1	1	0.8	Ė		0.5	0.3		\vdash	-		2	0.3		-
E. sagrum		0.3																	
Nonion depressulum	L				L		L		L	3				L		L		L	L
N. grateloupi	+	-	-	1	-	-	-	-	-	0.5	-	-	1	-	-	H	-	Ļ	-
DEPTH (meters)	2	1	₩	5 0.9	6 2.1	-	0 2.6	2.4	10	4 2.4	4 23	9.1.0	1 2.0	9 2.6	0 2 4	0.20	-	8 2.4	2 3
TEMPERATURE (C)	3 28.1	10	5 29	7 29	8	9 30	80	30	3	7 32	30	8 32.	33	58	30	3 310	15	26.2 29.	t
SALINITY (%.)	79 25	26	+-	01	3 26.	9	7.9 25	+	0	30 25	3.1 26.	7.6 25.	3 26	7.3 26	6	7.7 263	7.9 26.	8.1 26	70
рН	-	2	+-	6	-115 7.	+	0	1	╀	100	113	-43 7.	39 7	╁	7 14-	173 7	293	8 621	╀
Eh (mv)		M	1	-21	تا	1	1	12	12	+-	╁	H	┢	H	+-	-	\vdash	H	36
Eh (mv)	3	19	00	15	52	2	88	l in	12	24	60	2	23	20	18	1=	1 %	=	1 5
	+	9	+	1	21 25	- m	m	2	1	62 24	41 29	37 12	51 23	 	+-	31	8 58	12	27

TABLE 1. Faunal composition in percent of August 14th, 1962 collection.

STATION	ı	2	3	4	5	6	7	8	9	10	11	12	13	14	118	5 10	5 17	7 18	Ī
NUMBER OF SPECIMENS	30F	399	300	298	68	277	184	122	991	30	33	6		243		1 8	380	504	T
Ammodiscus incertus	†	İ	İ	İ	İ	İ	İ	0.8		İ	İ	İ	İ	İ	İ	İ	İ	上	t
Glomospira charoldes	\perp	\perp	\perp	L	L	L	L	L	L		L	L	L	0.4	L	L	I	I	I
Ammobaculites dilatatus	0.0	-	Q	-	+	╀	+	1	ao	L	1	1	L	\perp	L	\perp	0.3	4	1
A. exigues	4	+	+	10.	+	<u> </u>	+	+	+	-	┞	╀	╀	╀	╀	Ļ	+	+	+
Schenckiella occidentalis Clavulina tricarinata	3	+-	+	6	4	0.4	+	0.8	+	╀	┝	╀	╀	+	+	2	#	0.2	4
Valvulina oviedojana (Group I)	2	14	+	3	+	+	+	lue lue	+	╁	┝	╁	╁	0.4	╫	╁	+	+	6
V. oviedolana (Group 2)	0.6	+-	+-	۲	+	+	+	0.8	+	+	-	╁	+	+	+	+	+	╁	0.
Cyclogyra involvens	1	T	T	T	T	ī	1	1	2	3	3	T	T	0.4	1	2	0.6	0.2	+
Nodobaculariella cassie	Ι	Ι					T						T	T	T	T	T	T	T
Mitiolinella circularis	2	5	Q9	0.3	1	2	2	0,8	0.6	3		L		I		5	3	4	1
M. fichteliana	\perp	L	1	L	L	L		_			L			L		L	L	L	L
M. labiosa	-	L	-	L	L	L	L	1		_	L	L	L	L	L	L	L	L	L
M. obliquinada M. suborbicularis	0.3	0.9	0,3	2	1	0.7	-	ـ	0.6	_	_	_	L	0.4	L	L	1	2	0.
Massilina secans	╀	0.7	0.7	-	\vdash	-	-	-	_	L	_	_	_	┞-	L	L	L	┞	L
Pyrgo subsphaerica	╁	0,3	0,3	-	-	-	-	-	\vdash	Н	_	-	<u> </u>	ŀ	┝	-	╀	⊢	┞
Quinqueloculina agglutinans	0.3	1	1	\vdash	-	-	-	-	Н	Н	-	-	-	┝	-	-	\vdash	┝	H
Q. bosciana	16	9	-	14	7	9	15	111	38	10	3	100	17	21	22	12	9	12	112
Q. laevigata	6	12	26	8	6	6	5	11	4	10	-	٣	 ' '	1	7	13	2	15	7
Q. lamarckiana	06	0.6	3	Ť	Ť	0.4	۲	۳	H	Ť	\dashv	H	-	-	†	۲۰۶	3	+	0.9
Q. poeyana	22	11	15	31	35	9	3	20	13	10	6		33	3	4	7	11	5	18
Q. polygana		2						0.8						0.4	3	Ė	Ë	0.7	0.0
Q. sabulosa	3	3	0.3	Q3			4	15	0.6						1	2	3	Q5	7
Q. seminulum	3	0.6	0,6	4	3		0.5	2	2					1			2	1	5
Q. subpoeyang	2	14	1	0.7			2	3	2								ī	Q5	ī
Q. tenagos		0.6																	0.9
Spiroloculina antillarum	0.6									_	_								
S. eximio	0.3		Н	-	_		_	Н	_	_	_	_	_		_				
Triloculina bassensis	0.3	_	0.3	-	-	0.4	_	Н	_	4	_	4		0.4			1	-	0.3
T. bermudezi T. linneiana	6	5	3	14	7		-	19			12	-	33	-	20	_	28	-	22
T. ablonga	0.3	0.9	2 0,3	3	10	3	5	3	5	3	+	\dashv	-	2	3	5	3	9	6
T. rotunda	3	2	0.6	3	6	4	-	4	-	-	\dashv	-	17	-	1	-	3	\dashv	_
T. sidebottomi	-	-	0.6	4	-	\dashv	\dashv	0.8	=	3	+	+	\dashv	0.4	-	-	ŧ	4	2
T. trigonula	0.3	_	0.3	\dashv	1	+	-	\dashv	\dashv	+	+	+	+	-	\dashv	-	Н	-	_
Hauerina bradyi	3	5	5		7	21	34	2	17	20	76	+	+	33	35	12	13	24	6
Archaias angulatus		-	0.6		Ť				-	+	7	7	7	-	-	-		0.2	2
Fissurina cf. F. lucida							\neg		\neg	7	T	7	7	\neg					_
Butiminella elegantissima				.]							T	1	7						-
Bolivina lanceolata	1	,																	
	0.3										I								
B. striatula										\Box		\Box						\Box	
Discorbis floridana	2	0,3	_	0.3	_	4	0.5	2	4	7	1	\perp	1	5	1			2	3
D. nitida	-	4	-	4	4	4	_	4	4	4	4	4	4	4	_	4	_	4	_
D. rosacea	-	0.6	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
Planorbulina mediterranensis	-	4	-	+	+	+	-	+	+	4	4	4	1	4	4	4	4	4	_
Ammonia beccarii A. translucens	+	4	4	$\overline{}$	4	-	-	-	4	+	+	+	4	0.4	-	-	0.6	0.7	_
A. translucens Elphidium advenum	5	-	+	7	10	+	-	8.0	+	+	+	+	+	+	+	2	4	_	_
E. galvestonense	+	4	2	+	+	+	+	2 (1	+	+	+	+	+	+	-	-	0.2	
E. posyanum	2	0.6	+	+	+	+	$\overline{}$	0.8	0.6	+	+	+	+	1	7	2		Q5 ().3
E. sagrum	-	7	+	+	+	+	Ť	7	+	+	+	+	+	+	+	\dashv	v.0	7	
Nonion depressulum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_
N. grateloupi	1	1	1	1	+	+	1	+	+	+	+	+	+	+	+	+	+	+	-
DEPTH (meters)	1.2	5.0	2.3	60	2.7	2.4	2.6	2.4			2.3	8	5.0	5.6	2.4	2.0	8	2.4	2.3
TEMPERATURE (C)	32.1	31 -	32.1	31.9	31.6	32.0	31.4	31.7			30.9	Ē	31.	31.3	31.4	31.4	31.6	31.6	31.8
SALINITY (%s)	26.2	26.5	26.7	26.4	25.8	26.2	26.4	26.3	26.1	7	101	25.6	25.8	25.3	2.92	25.4	28.9	6	25.6
рН	2.8	4.9	8.2	7.9	7.3	8.2	7.8	67		7.8	\neg	σΤ	7.9	0.8	7.9	8.2	0.0	_	8.9
Eh (mv)	35	234	253	9	121-	76	192	36	-1	E.	03	60	74	88	30	175	236	244	69
SAND (%)	25	4	52	33	80	45	23	24	43	37	32	12	20	24	2	38	34	9	44
SILT (%)	45	2	6	9	45	29	32	63	25	44	23	59	_	38	25	9		53	28
	-													38			56	_	28

TABLE 2. Faunal composition in percent of August 17th, 1962 collection.

STATION	Ti	T ₂	13	14	5	T 6	7	8	9	10	111	12	13	14	15	16	17	18	115
NUMBER OF SPECIMENS	+	+	+	+	H	1	1	T	H	T	T	T	1	T	t	T	T	T	t
	245	388	265	233	25	317	162	30	179	92	-2	4	0	-	78	55	20	93	000
Ammodiacus incertus Glomospira charpides	+	+	╁	0.8	4	╀	+	\vdash	+	╀	\vdash	+	-	H	+	⊦	+		+
Ammobaculites dilatatus	+	╁	2	lue	1-	+	0.6	-	+	+	\vdash	\vdash	┝	-	╁	┝	+	0.3	+
A. exigues	0.4	+	t	+	+	+	100	+	\vdash	\vdash	-	+	\vdash	+	+	╁	+	+	+
Schenckiella occidentalis	3	0.8	0.7	0.4	8	0.3	7	7	2	\vdash	8	\vdash	1	T	+	t	+	+	t
Clavulina tricarinata	T	QS	d	9	Ť		1	1	-	T	F	1	-	T	1	T	\dagger	\vdash	T
Valvulina oviedoiana (Group I)	Ti	3	0.7	3				Г	Г	T	T	T	1	-	T	T	T		T
V. aviedolana (Group 2)	0.4	3		0.4															0.4
Cyclogyrd involvens	0.4	1	0.7	1	L	1	_		2			L		L		2		0.3	L
Nodoboculariella cassis	╀-	1	L	1	_	0,3		L	<u>_</u>	L	L	_	L	_	L	_	L	_	L
Miliolinella circularis M. fichteliana	+	5	2	7	-	11	15	-	12	-	-	L	5	22	26	16	10	31	2
M. labiosa	+	0.5	+	0.4	-	-	-	-	-	-	-	-	-	-	-	-	0.5	-	-
M. obliquinoda	+	10.0	+	2	-	03	0.6	\vdash	-	-	-	-	-	-	-	-	-	0.5	-
M. suborbicularia	t	+	1	F	-	-	-	-	-	1	-		-	-	H	-	+	0.0	-
Massilina secons	T	T	0.4			\vdash			-			-	-	-	-	-	-		-
Pyrgo subsphaerics																			
Quinqueloculina agglutinane	0A	 	2			0.3											0.5		
Q. bosciana	26		11	12	12	8	7	13	-	34	8	75	28		11	24	7	6	4
Q. łasvigata	9	16	12	8	20	9	10	7	4	4		25	15	5	5	14	2	4	10
Q. łamarckiana	-	4	6	0.4		-	H	_	0.5	_		_	_	_	_	_	6	0.1	3
Q. poeyana	15	13	35	9	16	6	10	10	11	36	33	-	6	17	5	5	28	8	24
Q. polygona Q. sabulosa	2	0.8	-	-	\vdash	0.3	4	43	-	4	-	-	1		-	4	2	0.3	_
Q. seminulum	8	2	0.4	3	8	2	2	73	2	4	8	-	7	_	-	-	2	0.3	0.9
Q. subposyana	0,4	6	2	2	-	-	-	3	0.5	2	-	-	1		-	-	5	1	1
Q. tenagos			0.4							_			1		-	-	۲	0.1	-
Spiroloculina antillarum	T											-		-					
S. eximia														or new man					_
Trilocutina bassensis	0,4	1				0.6			0.5				2				0,5		0.
T. bermudezi	16	2	2	16	16	28	17	7	13	4	8		14	11	10	14	8	10	3
T. tinnelang	0.8	2	4	1	-	1	6		3		_	_	6		3	4	2	5	0.9
T. oblonga	1	-	-	0.4		0,3	1	-	0.5	4	-	_		-			0.5		_
T. rotunda T. sidebottomi	2	0.2	2	2	4	3.0	0.6	-	-	4	-	_	1	_	_	5	1	-	
T. sidebottomi T. trigonula		0.2	Н	0A	-	-	-	-	-		-	-	-	5	-	-	0.5	\vdash	-
Haverina bradyi	6	6	2	4	\dashv	25	11	\dashv	13	5	25	\neg	Б	39	30	11	5	27	2
Archaias angulatus		8	4		7			7		-		-		-	-	-	Ť	0,2	
Fissurina cf. F. lucida	0.4						0.6		7						4	-	0.5	0.3	
Buliminella elegantissima																			-
Balivina lanceolata		0.5			_		_												-
B. lowmani	H	-			4	_	_	_	4	4	4	_	_	_		_			·
B. striatula		-	-	_	-	-	-	-	+	-	4	-	-	-	_	-	Н	4	nwise
Discorbis floridana D. nitida	0.4	Q2	0.4	3	4	4	2	-	+	-	\dashv	-	4	\dashv	3	-	-	4	-
D. rosacea	Н	-	0.4	\dashv	+	-	+	-	+	-	\dashv	-	-	+	-	-	-	-	atten
Planorbuling mediterranensis	H	+		+	+	-	+	1	-	-	-	-	+	-		-	-	+	(Amount)
Ammonia beccarii	П	2	1	7	7	1	0.6	3	+	7	1	7	7	\dashv		\dashv	1	0.1	-
A. translucens	2	1	1	1	13	8		7			8		2	1			0.5	-	0.4
Elphidium advenum	Ц			\Box															****
E. galvestonense	Н	3		04	4	_	_	_	1	_	_	_	1		1		0.5	0.5	0.4
E. posyanum	4	2	4	0.4	1	-	2	4	4	4	-	-	4	-	4	_	Ц	0.8	
E. sagrum Nanian depressulum	Н	-	0.4	+	+	-	00	+	+	-	-	+	+	+	-	-	-	+	-
N. grateloupi	\vdash	0.5	J.79	+	+	-	0.6	+	+	+	+	-	+	+	-	-	-	+	-
DEPTH (meters)	1.2	0	10	6.0	2.1	4.9		4	4	4	E)	80	0	9	4	0	60	4	м
TEMPERATURE (C)	30.3	30 1 2	30.0	30.4 0	30.7 2	30.4 2	7	31.0 2	31.0 2	30.7 2	1.0 2.	4	30.9 2.	30.8 2	30.5	51.2 2.	30.4	30.9	1.3
SALINITY (%e)	27.1 3	26.6 3	26.9 3	26.4 3	26.1 3	26.1 3	00	27.0 3	27.0 3	26.8 3	26.5 31	26.1 3	26.4 3	25.9 3	26.4 3	26.5 3	26.6 3	26.6 3	25.9 31
рН	97	8.0	7.7	7.7	7.6	7.6	8.0	7.8	7.8	7.7	8.0	7.3	- 8	2.9	7.9	- 6	8,2	8.2	7.9 2
Eh (mv)	E .	80	230	80	97	-37	4	911	224	165	+	4	137	99	6	509	250	225	94
	ıΩ	88	46	21	- 2	36	36	25	02	26	8	6	38	4	a	4	34	9	32
SAND (%)									_1		_	-		-			-	+	- Nikosoli
SILT (%)	2.5	9	36	59	52	37	40	38	2.4	37	47	55	5	43	35	2	28	100	54

TABLE 3. Faunal composition in percent of August 20th, 1962 collection.

STATION	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	+
NUMBER OF SPECIMENS	170	83.0	518			347	232	17	80	138	30	6	399		2	28	23	305	3
Ammodiscus incertus	I	I	0.1	3	I					L	İ	İ	İ				I		İ
Glomospira charoldes	1	0:	2,0,5	-	L	L	0.4		L		L		L		L	L	L	L	Į
Ammobaculites dilatatus A. exiguus	+	+	+	+	+	\vdash	-	-	╀	\vdash	-	-	1	-	<u> </u>	+	╀	-	4
A. exigues Schenckiella occidentalis	3	+	0.2	5	+	+	╁	\vdash	+	+	╀	-	\vdash	-	-	╀	╀	╀	+
Clavulina tricarinata	T,	0,4	-	5	+	+	+	+	-	\vdash	+	-	╁	-	-	╁	╁	╁	t
Valvulina oviedolana (Group I)	25	+	+	Ť	T	†	\vdash	1	1	1	\vdash	H	0.2	-	-	\vdash	t	†	t
V. oviedolana (Group 2)	2	2	I		T						T	Г	\vdash	Г			\vdash	T	1
Cyclogyra involvens	L	L	0.2		L	L	2		L				0.2						I
Nodobaculariella cassis	\perp	1	1	_	L	_	_	L	L	L	_	L	L		_	_	L		1
Miliolinella circularis M. fichteliana	0.€	2	5	5	┡	5	3	-	5	6	3	-	2	_	<u>_</u>	1	L	0.6	1
M. labiosa	+	+	+	-	\vdash	-	-	-	-	-	-	<u>_</u>	-	_	_	├-	-	-	4
M. obliquinoda	2	100	0.6	\vdash	-	-	0.4	-	-	-	3	-	2		-	⊢	-	┞	+
M. suborbicularis	1-	0.6	0.6	+	+	-	0.4	-	-	-	3	-	2	_	-	⊢	-	+	ł
Massilina secans	+	+	+	\vdash	┢	\vdash	-	-	-	-	-	-		-	-	-	-	4	t
Pyrgo subsphaerica	T	\dagger	T	\vdash	\vdash	1		-	-	-	-	-			-	1	-	-	t
Quinqueloculina agglutinans	Ι	0.4	0.2														Т		ţ
Q. bosciana	6	6	21	9		6	10	6	39	35	13	11	58		58	36	52	13	İ
Q. laevigata	3	20	30	12		29	34	53	14	31	13	89	21		33	14		7	İ
Q. lamarckiana	1	3	1	_		_							Ш					1	I
Q. poeyana	9	5	9	22		1	5	29	22	4	17		0,2			Ш	9	12	ļ
Q. polygona	+	1	0.6	<u> </u>	H	H		\vdash	Н	Щ	-		\vdash	_		Ш	<u> </u>	0.3	ļ
Q. sabulosa Q. seminulum	8	3	1	3	H	0.3	3	-	+	0.7	H		1	-		4	Ļ	_	1
Q. subpoeyana	5	28	3	2	Н	0.3	3		-	0.7	3	-	Н	-	-	2:	-	0.6	٠
Q. tenagos	13	0.4	3	-	\vdash	0.0	3	\dashv	-	U./	-	-	H	-	-	21	17	4	
Spiroloculina antillarum	0,6			Н	H		\forall	\dashv	\forall	\neg	-		\forall	-	-	\vdash			f
S. eximia	Γ							\neg	\forall	\dashv	7		\forall	7		П			f
Trilocutina bassensis		ı	0.6			0,3	0.4											2	İ
T. bermudezi	8	2	4	9		41	16		9	8	27		9			4	9	12	t
T. linneiana	06	1	4	5		3	5			3			0.2			7	4	3	l
T. oblonga	2	0.4	1	2		0.3							0.5			4			
T. rotunda	Н	0.6	Ш	4			_		4	0.7	_		0.2	_				2	d
T. sidebottomi		_	H	-	-	_	4	-	-	-	-	_	_	4	4	4	_	Ц	-
T. trigonula	0.6	_	0.2	-	-	\dashv	_	-	+	-	-	-	+	4	4	_	_		H
Hauerina bradyi Archaias angulatus	3	3	3	0.8	-		17	-	5	9	17	-	3	+	В	7	_	37	L
Fissurina cf. F. lucida	2	0,2	-	-	+	-	+	-	+	+	+	-	٧.٤	+	+	귀	-	03	١
Butiminella elegantissima	H	0.2		7	+	7	+	+	+	+	+	\dashv	+	+	+	\dashv	\dashv		
Bolivina lanceolata	0.6					1	1	1	1	+	+	7	+	+	7	+	\dashv	-	r
8. lowmani							1	1	1	1	1	1	+	1	1	7	7	1	Ī
B. striatula									J				J			1			C
Discorbis floridana	1	0.6	-	5		0.9	0.4	6	I	I			I	I	J	J		3.0	
D. nitida	Ц	4	1	1	1	_	1	1	1	1	1	1	1	1	1	J			Ĺ
D. rosacea	Н	3	5	4	4	4	4	4	4	1	1	4	4	4	4	4		4	-
Planarbulina mediterranensis	\vdash	-	-	-	+	-	4	+	4	-	4	4	4	+	4	1	_	4	-
Ammonia beccarii	-	3.0	0.6	-	+	+	+	+	-	+	+	-	+	+	4	+	-	4	-
A. translucens Elphidium advenum	10	-	\dashv	8	+	-	+	6	-1	0.7	+	+	+	+	+	+	4	-	_
E. gaivestonense	\vdash	0.4	0.0	+	+	-	+	+	+	+	+	+	+	+	+	+	-	+	-
E. poeyanum		0.6	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	c
E. sagrum				+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-
Nonion depressulum							1	1	1	1	1	1	1	1	+	7	1	1	-
N. gratelaupí					T		T	T			1	T	T	T	1	T			_
DEPTH (meters)	1.2	2.3	2.4	-5		2.7	2.7	2.4	2.6	5.6	5.6	9	4.2	T	2.4	8	12	2.6	
TEMPERATURE (C)	20.0	9.6	20.0	19.5		20.2	20.3	20.5	20.5	20.7	21.0	50.9	20.7	1	6.03	21.1	21.2	21.3	
\$ALINITY (%.)	38.6	40.0	40 B	39.3		40.0	m	39.3	10	0	10	38.6	38.6	T	38.6	39.3	393	37.9	
рН	7.8	62	7.8	7.9		=	0.8	80	-	7		0 2	1	T	8	0	80	82	
Eh (mv)		1	1	-100	1	230	-140	-140	2	-50		8	1	+	8	_	6-	9	
SAND (%)	25	74	2	44	1	\neg	34		_	0	_	<u></u>	4	1	8	45	4	#	
SILT (%)	32	=	22	62	1	9	44	35	38	39	47	45	39	1	2	35	47	\$	-
			-		-	-	-+	-+	-			-+		-+	-+	-	-+	-+	-

TABLE 4. Faunal composition in percent of February 9th, 1963 collection.

TABLE 5. Observed ranges of environmental parameters in Buttonwood Sound.

PARAMETER AND PERIOD	OBSERVED RANGE	VARIATION
<u>Depth</u>	0.9 - 2.7 m	1.8 m
Temperature Summer Winter Total	28.1 - 32.4°C 19.5 - 22.0°C 19.5 - 32.4°C	4.3 ⁰ C 2.5 ⁰ C 12.9 ⁰ C
Salinity Summer Winter Total	25.3 - 29.6 37.9 - 40.8 25.3 - 40.8	4.3 2.0 15.5
<u>pH</u> Summer Winter Total	6.9 - 8.9 7.0 - 8.0 6.9 - 8.9	2.0 1.0 2.0
Eh Summer Winter	(-210 - +382 mv)* -14010 mv	(592 mv)* 130 mv
Sediment Size Sand Silt Clay	2 - 88% 5 - 71% 6 - 63%	86% 66% 57%

^{*} Summer Eh potentials not reliable due to measurement techniques.

TABLE 6a. Comparison of faunal composition from August 14th, 1962 samples in terms of proportional contribution of five reference samples. (Roman numerals refer to text figures 4a-e,)

STATION	I	II	III	ΙV	٧
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0.000 0.000 0.000 0.560 0.842 0.780 0.552 0.000 0.201 0.000 0.179 0.146 0.000 0.000 -0.023 0.000 0.123 0.000	1.000 0.000 0.000 0.913 0.073 0.508 0.065 0.000 0.058 0.000 -0.146 0.570 0.000 0.000 -0.064 0.000 -0.002 0.000	0.000 1.000 0.000 0.118 0.111 -0.018 0.146 0.000 -0.029 0.000 -0.012 0.056 0.000 0.000 -0.016 0.000 0.121 0.000 0.000	0.000 0.000 0.000 0.174 0.168 0.798 0.417 0.000 0.127 0.000 0.748 0.000 0.000 1.000 0.874 0.000 0.319 0.000	0.000 0.000 0.000 0.122 -0.175 0.343 -0.158 0.000 0.984 0.000 0.130 0.556 0.000 0.000 0.275 0.000 0.074 0.000
					0.000

TABLE 6b. Comparison of environmental parameters from August 14th, 1962 stations in terms of proportional contribution of the reference station. (Roman numeral refers to text figure 5.)

STATION	I		
. 1	0.967		
	1.000		
2	0.459		
Δ	0.000		
5	0.279		
6	0.393		
4 5 6 7	0.556		
8	0.847		
8 9	0.852		
10	0.696		
iĭ	0.732		
12	0.435		
13	0.619		
14	0.450		
15	0.461		
16	0.801		
17	0.915		
18	0.818		
19	0.793		

TABLE 7a. Comparison of faunal composition from August17th, 1962 samples in terms of proportional contribution of five reference samples. (Roman numerals refer to text figures 6a-e.)

STATION	VI	VII	VIII	IX	Х	-
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	-0.410 0.000 0.000 0.033 0.000 0.557 0.458 0.000 -0.148 0.000 0.000 0.000 0.000 0.299 0.375 1.000 0.000 0.727 0.060	0.600 0.000 0.000 0.642 1.000 -0.008 -0.113 0.000 0.217 0.000 0.000 0.000 0.000 0.000 0.024 -0.052 0.000 0.000 0.813 0.298	0.242 0.000 0.000 0.006 0.000 0.072 0.257 0.000 0.740 0.000 0.000 1.000 0.512 0.315 0.000 0.425 0.329	-0.152 0.000 0.000 -0.028 0.000 0.098 0.705 0.000 0.231 0.000 1.000 0.000 0.413 0.656 0.000 0.248 -0.255	0.049 1.000 0.000 -0.018 0.000 -0.009 0.045 0.000 0.060 0.000 0.000 0.000 0.013 -0.027 0.000 0.000 0.000	

TABLE 7b. Comparison of environmental parameters from August 17th, 1962 stations in terms of proportional contribution of the reference station. (Roman numeral refers to text figure 7.)

STATION	II		
1	0.683		
2	0.992		
3	1.000		
4	0.450		
5	0.000		
4 5 6 7	0.650		
	0.906		
8	0.532		
8 9	0.509		
10	0.435		
11	0.734		
12	0.749		
13	0.667		
14	0.701		
15	0.531		
16	0.894		
17	0.948		
18	0.988		
19	0.641		
	0.071		*

TABLE 8a. Comparison of faunal composition from August 20th, 1962 samples in terms of proportional contribution of four reference samples. (Roman numerals refer to text figures 8a-d.)

TABLE 8b. Comparison of environmental parameters from August 20th, 1962 stations in terms of proportional contribution of the reference station. (Roman numeral refers to text figure 9.)

STATION	III					
STATION 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0.708 0.907 0.972 0.618 0.000 0.267 0.709 0.792 0.956 0.824 0.551 0.402 0.772 0.580 0.714 0.923 1.000					
18 19	0.932 0.652		,			

TABLE 9a. Comparison of faunal composition from February 9th, 1963 samples in terms of proportional contribution of three reference samples. (Roman numerals refer to text figures 10a-c.)

STATION	XV	XVI	IIVX	
1	0.000	0.000	0.000	
2	0.000	0.000	0.000	
3	0.000	0.000	0.000	
4 6	0.000 0.000	0.000	0.000	
7	-0.025	0.363	0.333	
8	0.000	1.000	0.000	
9	0.000	0.000	0.000	
10	0.698	-0.090	0.082	
11	-0.330	0.133	0.310	
12	0.654	0.651	-0.065	
13	0.822	-0.231	-0.141	
15	1.000	0.000	0.000	
16 17	0.000 0.298	0.000 -0.191	0.000 -0.206 1.000	
18 19	0.000 -0.204	0.000	0.071	

TABLE 9b. Comparison of environmental parameters from February 9th, 1963 stations in terms of proportional contribution to the reference station. (Roman numeral refers to text figure 11.)

STATION	IV	
4	0.605	No.
4	0.625	
6	0.902	
7	0.966	
8	1.000	
9	0.407	
10	0.314	
11	0.000	
12	0.647	
15	0.631	
16	0.635	
17	0.559	
18	0.674	
19	0.096	
13	0.000	
13	0.000	

FIGURE 1. Station location

FIGURE 2. Bathymetry of Buttonwood Sound.

FIGURE 3. Sediment-size distribution map of Buttonwood Sound.

FIGURE 4a. Proportional contribution of Assemblage I, August 14th, 1962. (Reference sample indicated by +.)

FIGURE 4b. Proportional contribution of Assemblage II, August 14th, 1962. (Reference sample indicated by +.)

FIGURE 4c. Proportional contribution of Assemblage III, August 14th, 1962. (Reference sample indicated by +.)

FIGURE 4d. Proportional contribution of Assemblage IV, August 14th, 1962. (Reference sample indicated by +.)

FIGURE 4e. Proportional contribution of Assemblage V, August 14th, 1962. (Reference sample indicated by +.)

FIGURE 5. Proportional contribution of Environmental Model I, August 14th, 1962. (Reference station indicated by +.)

FIGURE 6a. Proportional contribution of Assemblage VI, August 17th, 1962. (Reference sample indicated by +.)

FIGURE 6b. Proportional contribution of Assemblage VII, August 17th, 1962. (Reference sample indicated by +.)

FIGURE 6c. Proportional contribution of Assemblage VIII, August 17th, 1962. (Reference sample indicated by +.)

FIGURE 6d. Proportional contribution of Assemblage IX, August 17th, 1962. (Reference sample indicated by +.)

FIGURE 6e. Proportional contribution of Assemblage X, August 17th, 1962. (Reference sample indicated by +.)

FIGURE 7. Proportional contribution of Environmental Model II, August 17th, 1962. (Reference station indicated by +.)

FIGURE 8a. Proportional contribution of Assemblage XI, August 20th, 1962. (Reference sample indicated by +.)

FIGURE 8b. Proportional contribution of Assemblage XII, August 20th, 1962. (Reference sample indicated by +.)

FIGURE 8c. Proportional contribution of Assemblage XIII, August 20th, 1962. (Reference sample indicated by +.)

FIGURE 8d. Proportional contribution of Assemblage XIV, August 20th, 1962. (Reference sample indicated by +.)

FIGURE 9. Proportional contribution of Environmental Model III, August 20th, 1962. (Reference station indicated by +.)

FIGURE 10a. Proportional contribution of Assemblage XV, February 9th, 1963. (Reference sample indicated by +.)

FIGURE 10b. Proportional contribution of Assemblage XVI, February 9th, 1963. (Reference sample indicated by +.)

FIGURE 10c. Proportional contribution of Assemblage XVII, February 9th, 1963. (Reference sample indicated by +.)

FIGURE 11. Proportional contribution of Environmental Model IV, February 9th, 1963. (Reference station indicated by +.)